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,, ABBREVIATIONS AND SYMBOLS
A plant matrix
B input matrix
C output matrix
F measurement matrix
Ko,xl controller matrices
M transducer matrix
T sampling period
cak~1lp k=th Markov parameter
G(2) transfer function uatrix
() asymptotic transfer function matrix
e error vector
f sampling frequency
g gain parameter
u control input vector 2
v command input vector
w measurement vector
x state vector
Yy output vector
z integral of error vector
c set of complex numbers
R set of real numbers
RP*¥q set of real pxq matrices
T continuous-time set [0,+)
Ty discrete~time set {0,T,2T,...} :
Z, set of transmissyion zeros ;
Z. set of 'slow' modes '
Zt set of ‘fast' modes
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CHAPTER 1

INTRODUCTION




1.1 INTRODUCTION

In spite of the extensive effort which has been expended
during the past twenty years, most currently available
techniques (Athans and Falb 1966, Rosenbrock 1974, MacFarlane
1980, Wonham 1974, Wolovich 1974, Davison and Ferguson 1981)
for the design of tracking systems incorporating linear
multivariable plants are both conceptually and computationally
rather complicated. Furthermore, such techniques are almost
exclusively concerned with the design of analogue controllers
and are therefore inapplicable to the much more important
practical task of designing digital controllers.

The design techniques Qescribed in this report are both
conceptually and computationally simple. In addition, these
technigues are equally applicable to the design of both
analogue and digital controllers. This universality and
simplicity derives from the fact that these techniques are
based upon the systematic exploitation of a solitary system-
thecretic result from the theory of singular perturbations
(Porter and Shenton 1975). This system-theoretic result
exhibits the distinctive asymptotic structure of the transfer
function matrices of linear multivariable systems with ‘slow’
and 'fast' modes in a manner which is directly applicable to
the design of tracking systems incorporating either high-

gain analogue controllers or fast-sampling digital controllers.

1.2 RecuLAR AND IRREGULAR PLANTS

In the context of the design of high-performance tracking




systems, it is convenient to classify linear multivariable

plants as follows:

(i) Regular plants: first Markov parameter of maximal

rank, minimum phase;

{1i) Irregular plants: first Markov parameter of non-

maximal rank, non-minimum phase.

The design of tracking systems incorporating regular plants

is considered in Chapters 2 and 3, whilst the design of

tracking systems incorporating irregular plants is considered

in Chapters 4 and 5. In the case of reqular plants, arbitrarily
fast and non-interacting tracking behaviour is achievable by
appropriate selection of gain parameters or sampling periods
simply by implementing error-actuated analogue or digital
proportional-plus-integral controllers. However, in the case

of irregular plants, good tracking behaviour is achievable

T Y = SO N

only by the simultaneous implementation of inner-loop com-
pensators to provide appropriate extra measurements for
control purposes. .

This result is crucially important since it makes explicit
the intuitively obvious fact that controller and transducer
designs are inseparable, and confirms the fact that the :
irrelevance of much of 'modern' control theory to practical '
engineering design derives from its failure to consider in-
tegrated controller/transducer systems. The importance of é
the difference between regular and irregular plants obviously
requires that the set of transmission zeros of linear multi-

variable plants (Porter and D'Azzo 1977) be readily computable

3




and very powerful software for this purpose has accordingly
been developed (Porter 1979).
t




CHAPTER 2

DESIGN OF TRACKING SYSTEMS INCORPORATING
HIGH-GAIN ERROR-ACTUATED CONTROLLERS




2.1 INTRODUCTION

In this chapter,singular perturbation methods are used
to exhibit the asymptotic structure of the transfer function
matrices of continuous-time tracking systems incorporating
linear multivariable plants which are amenable to high-gain
error—~actuated analogue control (Porter and Bradshaw 1979a).
Such tracking systems consist of a linear multivariable plant
governed on the continuous-time set T = [0,+«) by state and
output equations of the respective forms (Porter and

Bradshaw 1979b)

[;:l(t):l [All , Alz] [xl(t)] [o] © 2.1
= + u .
and

x) (£)
y(t) = [, , c,] ' {2.2)
1 2
together with a high-gain error-actuated analogue controller

governed on T by a control-law equation of the form
u(t) = g{Koe(t)+K12(t)} (2.3)

which is required to generate the control input vector u(t)
8o as to cause the output vector y(t) to track any constant
command input vector v(t) on T in the sense that the error

vector e(t) = v(t) - y(t) assumes the steady-state value

1im e(t) = lim{v(t)-y(t)} = O (2.4)

to+» trx




for arbitrary initial conditions. In equations (2.1),(2.2),(2.3),

and 2.4 ,x, () € 74, 2 () ERY, w) € 7Y, vy €%,
AnER(n-L)x(n—z)' Alzen(n-l)xz’ A21€sz(n-£)’ Azzenle’
B, € R***, cle:n“““""’, c, © R¥**, rank c,B, = 1, e(t) E 7%,
v(t)ERR‘, z(t) = z(o) + ét edt ERI, K°€R9’xz, KIER“‘Z,
and gGE:R+.

It is evident from equations (2.1),(2.2),(2.3) that
such continuous-time tracking systems are governed on T by

state and output equations of the respective forms

z(t) o ., -C,y , -C, z(t)
X, (8)] = o ., Al o A, x4 (£)
X, (t) gB,Ky , Ay1=9B,K C; , Ay, ~9BK C,l|x, (t)
1,
+ 0 v(t) (2.5)
gBZK
and
z(t)
y(t) = [o, Cy » Gl (%, (8) . (2. 6)
xz(t)

The transfer function matrix relating the plant output vector
to the command input vector of the closed-loop continuous-
time tracking system governed by equations (2.5) and (2.6) is

clearly

TG A o




AL, ¢, c =ir 1

L 2 L
c(M=fo,c,0C]f © 4 AL _ =Ry, 4 A, 0
2N

and the high-gain tracking characteristics of this sytem can
accordingly be elucidated by invoking the results of Porter
and shenton (1975) from the singular perturbation analysis
of transfer function matrices.

These results yield the asymptotic form of G()A) as the
gain parameter g -+ «» and thus greatly facilitate the deter-
mination of controller matrices Ko and Kl such that the
continuous-time tracking behaviour of the closed-loop system
becomes increasingly 'tight' and non-interacting as g is
increased. The frequency-response and step-response
characteristics of a continuous-time tracking system in-
corporating an open—~loop unstable chemical reactor (MacFarlane
and Kouvaritakis 1977) are presented in order to illustrate

these general results.

2.2 ANALYSIS

It is evident from equation (2.7) that,by regarding
€ = 1/g as the perturbation parameter, the asymptotic form
of the transfer function matrix G()A) of the continuous-time
tracking system as g + » can be determined by invoking the
results of Porter and Shenton (1975) from the singular

perturbation analysis of transfer function matrices. Indeed,




these results indicate that as g + » the transfer function

matrix G()) assumes the asymptotic form

PO) = F() + T | (2.8)
where
TO) = c I -A) I8, ' (2.9)
r(a) = C,(A1,-gn,) "tgBx . (2.10)
A = .A -Z‘_’ll:flx ' . -Ao c'lc] ' (2.11)
A12C2 Ko Ky v A177A4,C,7Cy
[ o - L
B, = _Anc;l] | o (2.12)
c, = x;'x; , o] , (2.13)
and
A, = -B,KC, | . (2.14)

It follows from equations (2.8),(2.9)and(2.11) that the ‘'slow*
modes Zs of the tracking system correspond as g + » to the

poles 2, J Z, of T(\) where
Z, =~ {a €c=|xxo‘+x1|-o} (2.15)
and
. , - . .. -1
2, = A Ecsnr, A)j+R ,Co Ch =0}, (2.16)

and from equations(2.8), (2.10) ,and(2.14) that the 'fagt'
modes Zf of the tracking system correspond as g + ®» to




the poles 23 of ;(A) where
2y = (A € C:|AT +gC,B K [=0} . (2.17)

Furthermore, it follows from equations (2.9),(2.11),(2.12),

and (2.13)that the ‘slow' transfer function matrix
T(A\) =0 (2.18)

and from equation (2.10) and(2.14) that the 'fast' transfer

function matrix
A~ "l
T(x) = (XIL+9C232K°) qczazxo . (2.19)

Hence, in view of equatiqns(Z.lB) and (2.19), it is
evident from equation (2.8) that asg + » the transfer
function matrix G(A) of the continuocus~time tracking system

assumes the asymptotic form
-1
r{) = (AIl+gC282K°) gCZBZKo (2.20)

in consonance with the fact that only the 'fast' modes
corresponding to the poles 23 remain both controllable and
observable as g + ». Indeed, the 'slow' transfer function
matrix F(x) vanishes precisely because the ‘'slow' modes
corresponding to the poles Z1 become asymptotically un-
controllable as g + » in view of the block structure of

the matrices A, and B, in equations (2.1l1) and (2.12) whilst the
'slow' modes corresponding to the poles Z2 become asymptotically
unobservable as g + » in view of the block structure of the
matrices A, and C, in equations (2.11) and (2.13)

10
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3. SYNTHESIS

It is evident from equations (2.5) and (2.6) that tracking

will occur in the sense of equation (4) provided only that

2, Uz Cc (2.21)

where C~ is the open left half-plane. In view of equations
(2.15),(2.16) ,and(2.17)the 'slowf and 'fast' modes will
satisfy the tracking requirement (2.21) for sufficiently
large gains if the controller matrices Ko and Kl are chosen
such that both ZICC- and Z3C ¢~ in the case of minimum-
phase plants for which (Porter and D'Azzo 1977) the set of

transmission zeros

. _ -1 -
Z, = {2 €c.un_£ A;1+A,,C,°C, =0 ¢ (2,22)

since it is then immediately obvious from equation (2.16)
that 22(::C'. Moreover, in such cases, tracking will become
increasingly 'tight' as g + = in view of equation (2.20).

Furthermore, if Ko is chosen such that
Cszxo = diag{ol,ozn..,dz} (2023)

where chE:R+ (j=1,2,...,%), it follows from equation (2.20)

- that the transfer function matrix G(A) of the continuous-

time tracking system will assume the diagonal asymptotic

form

, go ‘9" Lo n“l . 90¢g
I'(M L di‘g {AEULI- ’ Aﬁ%—; 9 ocase rrgg-}

(2.24)
)
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and therefore that increasingly non-interacting tracking

behaviour will occur as g + =,

2.4 ILLUSTRATIVE EXAMPLE

These general results can be conveniently illustrated
by designing a high-gain error-actuated analogue controller
for an open-loop unstable chemical reactor governed on T
by the respective state and output equations (MacFarlane
and Kouvaritakis 1977)

o

%, (£)] [1.38 , -0.2077 , 6.715 , -5.676] [‘xl(t)‘
X, (t) -0.5814 , -4.29 , O ., 0.675[|x,(¢)
:':3(t) 1.067 , 4.273 , -6.654 , 5.893|[x,(t)
%4(0)] Lo.048 , 4.273 , 1.343, -2.104]|x, ()]

o , 0
5.679 , 0 ul(t)
+ ' (2.25)
1.136 , =3.146] [us(t)
|1.136 , 0
and
%, (¢)] |
Yl(t) 1,0,1, =1 Xz(t)
- {2.26)
2(t’ 0 ’ 1 ¢ O Pe) 83(t)
Lx‘(t)J

from which it can be readily verified that Z, = {-1.192,
-5.039}(C ¢~ and that the first Markov parameter

12




'is of full tank In case {01,0 } = {l l} and K

o '.3:ol‘§}‘ . - v R

C.B, = T (2.2
272 .[5.679 . D SR

1 = 2K°, it
follows from equations(z 3),(2 23hand(2 27)€hat tho correspond-
ing high-gain orror-actuated analogue oontroller is governed
on by the control-law equation -

S

u, (¢t) o ,0.1761][01(1:)][ o ,0.3522 [zl(t)
=g +

(2.28)

n . . [ Lo
A Ve T e r REP RS

and 1€ is evident frém équations (2.17)°, (2.18), and (2.19) that
2, = {-2,-2}, 25 % (<1:192;-5.038}, 'and 2, = {-g,~g}.
is aldo evident from equaticn (2.24) that the asymptotic

transfer functidn matrix assumes the ‘diagonal form

(2.29)
T(x) = o xﬁ;”' C e e e :
and therefore that the closed-loop continuoul-timo tracking
syltom incorporatlng tho chomioal reactor will oxhibit
1ncreasingly 'tight' and non-intoracting txacking bohavlour
as g + » "when the control input voctor [ul(t) ' uz(t)]T
cg
generated by the highwgain analoguo controllox governed on
T by equation (2.28).

The actual frequency-response loci G(iw) for w € (-=,+w) are

shown in rig. 2.1' 2.2' and 2.3 when g s 25' SO, and 100'

respectively and it is clear that the actual frequency-response

13
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loci approach the asymptotic frequency-response loci T (iw)

as the gain parameter g is increased. The corresponding
step-response characteristics are shown in Fig 2.4 and Fig 2.5
when [v,(t) , v,()]T = [1 , 0] ana [v;(t) , v,(0)]7 =

[o . l]T, respectively, and it is evident that increasingly
'tight' and non-interacting tracking occurs as the gain

parameter g is increased.

2.5 CoNcLUSION

Singular perturbation methods have been used to exhibit
the asymptotic structure of the transfer function matrices
of continuous-time tracking systems incorporating linear
multivariable plants which are amenable to high-gain error-
actuated analogue control. It has been shown that these
results greatly facilitate the determination of controller
matrices which ensure that the closed-loop behaviour of such
continuous-time tracking systems becomes increasingly 'tight’
and non-interacting as the gain parameter g is increased.
These general results have been illustrated by the presenta-
tion of the frequency-response and step-response character-
istics of a continuous-time traciinq system incorporating
an open~locop unstable chemical reactor.
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CHAPTER 3

DESIGN OF TRACKING SYSTEMS INCORPORATING
FAST-SAMPLING ERROR-ACTUATED CONTROLLERS
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3.1 INTRODUCTION

In this chapter,singular perturbation methods are used
to exhibit the asymptotic structure of the transfer function
matrices of discrete-time tracking systems incorporating
linear multivariable plants which are amenable to fast-
sampling error-actuated control (Bradshaw and Porter 1980a).
Such tracking systems consist of a linear multivariable
plant governed on the continuous-time set T = ED,+w) by
state and output equations of the respective forms (Bradshaw

and Porter 1980b)

%, (t) A, , A x. (t) o)
[.1 = [11 12 [1 + [ ]u(t) (3.1)
x5 (t) Ajy ¢ Bypllxy(t) B,

and

x, (t)
ye) = [c; , c,] , (3.2)
x5 (t)

together with a fast-sampling error-actuated digital con-
troller governed on the discrete-time set TT = {o0,T,2T,...}

by a control-law equation of the form
u(kT) = £{K_e(kT)+K,z(kT)} (3.3)

which is required to generate the piecewise-constant control
input vector u(t) = u(k®T), t & [kT,(k+1)T), kT & T, so as

to cause the output vector y(t) to track any constant command
input vector v(t) on TT in the sense that the error vector

e(t) = v(t) - y(t) assumes the steady-state value
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lim e(kT) = lim{v(kT)-y(kT)} = O (3.4)

k+o k+o

for arbitrary initial conditions where £ = 1/T and T is
the sampling period. 1In equations(3.1),(3.2),(3.3), and (3.4),
x (8 € R, w00 € /Y, uie) ERY, y(o) €Y, a2, € rinNIx(=0)
Alz € R(n-!.)x!.' A21 €R2x(n-l) , A22 €R2x£’ Bz ERlxl'
CIER“‘(“'“, g2€kg'x£, rank C,B, = £, e(t) R, vv) ERY,
z(kT) = z(o) +'r3—.l>§- e(3m) € Y, K E R, x, ERW, ang
£ C R, 3=

It is evident from equations (3.1),(3.2), and (3.3) that
such discrete-time tracking systems are governed on T'I‘ by

state and output equations of the respective forms

z {(k+1) T} ]
xl{ (k+1)T}
Xy { (k+1) T}

[~ I, . -TC, , -TC, z (XT)

179117 EY K Cp 0 - £Y)

L£¥5K, 18, ~E¥ R Cy s 8y 5=£¥ K Co] X, (KT)

= f‘l’lK -fY K°C2 xl(kT)

-

TI,
+ [£¥ K, | v(KT) (3.5)
_EY K
and
z (kT)
y(kT) = [0, C; , C]|x, (k) ' (3.6)
X, (kT)
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where

) v ® 1 A P A. A
[ 11 12J - exp [ 11 le (3.7)
®21 ¢ 922 By v By

y A.. , A 0
[1] JTexp [11 12]t [ Jdt ) (3.8)
¥y Ayy v Ayl |(By

The transfer function matrix relating the plant output

and

vector to the command input vector of the closed-loop
discrete-time tracking system governed by equations (3.5)

and (3.6) is clearly

G(})

-1

XIE-II, TC TC TI

1 ! 2 L
n_2‘¢ll+fW1K°C1,‘012+leK°C2 leKo

(3.9)

and the fast-sampling tracking characteristics of this

system can accordingly be elucidated by invéking the results

of Porter and Shenton (1975) from the singular perturbation

analysis of transfer function matrices. !
These results yield the asymptotic form of G(A) as the

sampling frequency f + ~ and thus greatly facilitate the

determination of controller matrices Ko and Rl such that the

discrete-time tracking behaviour of the closed-loop system

becomes increasingly 'tight' and non~-interacting as f is
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increased. The frequency-response and step-response
characteristics of a discrete-time tracking system incorporat-
ing an open-loop unstable chemical reactor (MacFarlane and
Kouvaritakis 1977) are presented in order to illustrate these

general results.

3.2 ANALYSIS

It is evident from equation (3.9) that, by regarding
€ = 1/f as the perturbation parameter, the asymptotic form
of the transfer function matrix G(A) of the discrete-~time
tracking system as £ + = can be determined by invoking the
results of Porter and Shenton (1975) from the singular
perturbation analysis of transfer function matrices. Indeed,

since it follows from equations (3.7) and (3.8) that

o -I - [ ° A ’ A
£

£ 91 ¢ #3571 Ajy v By,

and

v, 0
lim £ = , (3.11)
£+ LY, By .

these results indicate that as f + » the transfer function

matrix G(A) assumes the asymptotic form
T(A) = T(A) + T(A) (3.12)
where

F(A) = C (AL I ~TA ) l-mo , (3.13)
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T(A) = cz(xxz-xz-A4)'lazx° , (3.14)

i -K;lxl ’ 0
[A12C KoKy + A17RA15C57Cy
B = , 3.16)
(o) -1
A6,
c, = KJ'x, . 0] , (3.17)
and
A, = -B,K.C, | . (3.18)

It follows from equations (3.12),(3.13), and (3.15) that the
'slow' modes Zs of the tracking system correspond as f +

to the poles Z,|J Z, of T(}) where
..l - ‘ '
z, = {x €.C:|A1,~I,+TK_"K, | =0} (3.19)
and
) - - -1
2, = (A€ C: AL _,-T _ -TA, +TA,,C57Cy[=0} , (3.20)

and from equations (3.12),(3.14), and (3.18) that the 'fast'
modes Zf of the tracking system correspond as £ + = to the
poles Z3 of T'(A) where

2y = {2 € C:|AT, -1 +C,B,K |=0} . (3.21)

Furthermore, it follows from equations (3.13),(3.15),(3.16),

and(3.17) that the 'slow’' transfer function matrix

r(x) =0 (3.22)
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and from equations (3.14) and (3.18) that the 'fast' transfer

function matrix
- , N ‘-

Hence, in view of equations (3.22) and (3.23), it is evident
from equation (3.12) thatas f + = the transfer function
matrix G(A) of the discrete-~time tracking system assumes

-

the asymptotic form'
. . o =1 .- . .
T(A) = (X12-12+c2521<°) C,B,K, (3.24)

in consonance with the faqt ;hag only the 'fast'_modes
corresponding to the'poles'z3 r;main both qant;ollable and
observable as £ + =, In@aed, the 'slow' transfer function
matrix ?(A) vanishes precisely because the 'slow’ modes
corresponding to the poles Z1 become asymptotically un-
controllable as £ + = in view of the block structure of the
matrices A, and B, in equat{ons (3,15) and (3.16) whilst the
'slow' modes.cqrrespopdiqg to thq poles Z2 become asymptotically
uncbservable as £ + » in view of the block structure of the
matrices A, and C, in equations (3.15) and (3..7).

3.3 SYNTHESIS

It is evident from equations (3.5) and (3.6) that tracking

will occur in the sense of equation (3.4) provided only that
,Uz, Co” ,, _ (3.25)

where 0 is the open unit disc. In view .of equations (3.19)
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(3.20),and(3.21) ,the 'slow' and 'fast' modes ﬁill satisfy

the tracking requirement (3.25) for sufficiently fast sampling
frequencies if the controller matrices Ko and Kl acve chosen
such that both zl(:Zv' for sufficiently small sampling
periods and 23(::0- in the case of miniﬁum;phase plants for

which (Porter and b'Azzo'1977)'the sé£ of transmission zeros
Z, = {2 €c=|un -2 A11+A12 3 l|-o}Cc (3.26)

where C is the open left half-plane since it is then
immediately obvious from eéuation(3.203that 22(210‘ for
sufficiently small sampling period#. Moreover, in such cases,
tracking will become increasingly 'tight' as £ + = in view

of equation (3.24). Furthermore, if K, is chosen such that

CyB,K, -,diag{al,az,...,az} A {3.27)

where 1-0 ErRMND™ (3=1,2,...,8), it follows from equation
(3.24)thatthetransfervfunction.matrii G()) of the discrete-time

tracking system will assume the diagbnal asymptotic form
9y

(0§ : [+ .
r(x) = diag{r_—ilw; ’ ﬁ% ? eese m;} (3.28)

and therefore that increasingly non-interacting discrete-

time tracking behaviour will occur as £ + =,

3.4 ILLUSTRATIVE ExAMPLE

These general results can be conveniently illustrated

by designing a fast-sampling error-actuated digital controller
for an cpen~loop unstable chemical reactor governed on T
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by the respective state and output equations (MacFarlane

and Kouvaritakis 1977)

%, (8)] [ 1.38 , -0.2077 , 6.715, -5.676] [x, (£
X, (t) -0.5814 , -4.29 , 0 , 0.675/[x,(t)
i3(t) 1.067 , 4.273 , -6.654 , 5.893|x,(t)
[x,(8)] [ 0.048 , 4.273 , 1.343, -2.104] [x,(t)_

[ o , o ]

5.679 , 0 ul(t)
+ (3.29)
1.136 , -3.146 uz(t)

1.136 , ©

and

%, (0]

' l .' 0 ’ l ¢ "1 xz(t) A

Cy(t) = : (3. 30)
o,1,0, 0 x3(t)

Lxqte)]

from which it can be readily verified that I = {=-1.192,
-5.039} (C ¢” and that the first Markov parameter
[ o , -3.146]
C232 - e s . (3.31)
5.679 , 0
In case {"1"’2} = {1,1}(.::5.1!1 - zxo, it follows from
equations (3.3) ,(3.27),and(2.38)that the corresponding fast-

sampling- error~actuated digital controller is governad on

T.r by the control-law equation
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[el(k'r) [ o ,0.3522° [zl(kT)
+
e,(kr)] | 0.6358, o z, (kT)

(3.32)

u, (kT) ] o ,0.1761
u,, (kT) -0.3179, O

and it is evident from equations "(3.19),(3.20), and (3.21) that

= {1=-2T,1-2T}, Z, = {1-1.1927,1-5.039T}, and Z, = {0,01}.

I3 1 3
It is also evident from equation (3.24) that the asymptotic

transfer function matrix assumes the diagonal form

i o]
’
F(y) = [X 1] (3.33)
0
’ x .

and therefore that the closed-loop discrete-time tracking
system incorporating the chemical reactor will exhibit
increasingly 'tight' and non-intexacting trécking behaviour
as f + » when the piecewise-consi:ant control input vector
[, (0 , uy(0)]T = [u, k1) , wkm]T, £ E[kT , k1)),
kT € Ty 18 generated by the fast-sampling digital con-
troller governed on T, by equation (3.32).

The actual frequency-respcnse loci G(el%T) for ur c [0, 2n]
are shown in Figs 3.1, 3.2, and 3.3 whenT =0.04, 0.02, and 0.01,
respectively, and it is clear that tﬁr:xe actual frequency-
response loci approach the asymptotic frequency-response

loci r(edwT

) as the sampling frequency f is increased. The
corresponding step-response characteristics are shown in
Fig3.4 and Fig 3.5 when[v, (¢) , vz(t)]T =1, O]T and [v,(t) ,
v,(t)] =[o , 1]T, respectively, and it is évident that in-
creasingly ‘tight' and non-interacting tracking occurs as the

sampling frequency £ is increased.
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3.5 CoNcLUSION

Singular perturbation methods have been used to exhibit

the asymptotic structure of the transfer function matrices

of discrete-time tracking systems incorporating linear multi-

variable plants which are amenable to fast-sampling error-
actuated digital cnnt;nl. It has been shown that these-
results greatly facilitate the determination of controller
matrices which ensure that the closed-loop behaviour éf.
such discrete-time tracking ékstems become increasingly
'tight' and non-interacting as the sa&bling frequency'f is
increased. These general results have be;n illustrated by

the presentation of the frequency-response and step-response

characteristics of a discrete-time tracking system incorporat-

ing an open-loop unstable chemical reactor. .
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CHAPTER 4

DESIGN OF TRACKING SYSTEMS

INCORPORATING INNER-LOOP COMPENSATORS

AND HIGH-GAIN ERROR-ACTUATED CONTROLLERS
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4,1 INTRODUCTION

In thischapter, singular perturbation methods are used
to exhibit the asymptotic structure of the transfer function
matrices of continuous-time tracking systems incorporating
linear multivariable plants which are amenable to high-gain
error-actuated analogue control (Porter and Bradshaw 1979)
only if extra plant output measurements are generated by
the introduction‘of appropriate transducers and processed
by inner-loop compensators. Such tracking systems consist
g?“a linear multivariable plant governed on the continuous-

time gset T = ED,+~) by state, output, and measurement equations
of the respective forms

%, (t) A A %, (t) 0
(:.1 } = [” ' 12“1 ] + [ }u(t) . (4.1)
X, (t) Ayy ¢ Bypllxy(t) By
x,(t)
Y(t) = [Cl ’ C2][ 1 ] ’ (4.2)

xz(t)

and

X, (t)
wit) = [F, , 92][ 1 :l ;o (4.3)

xz(t)

together with a high-gain error-actuated analogue controller

governed on T by a control-law equation of the form
u(t) = g{xoe(t)+Klz(t)} (4. 4)

which is8 required to generate the control input vector u(t)

80 as to cause the output vector y(t) to track any constant
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command input vector v(t) on T in the sense that .

lim{v(t)-y(t)} = 0 . . (4.5)

t-+o
as a consequence of the fact.that the error vector e(t) =
vit) - w(t) assumes the steady-state value

lim e(t) = lim{v(t)-w(t)} =0 (4.6)

t+o t+o

for arbitrary initial conditions. 1In equations (4.1), (4.2),
(4.3),and (4. 0%, (8) € R*74, 2,100 € °%, w E Y, y(o ERE,
wit) €R2’ Ay €R(n-£)x(n—2) , A12€ R(n-z)xJL' A21€ RAx(n-1) ,
A, Ekzxf.' Bzenle' clenlx(n-z) . Cy €R£x£' FlER!.x(n-n) ,
F, ©R**, rank c,B, < &, rank F,B, = £, e(t) E Y, v(t) € rY,
z(t) = z(0) + [S eat € R, x € r***, k € R¥™E, g CrY, and

[Fy + £l = [cy+ma;, o Coein,] | (4.7)

where M ER"X(n-“ . It is evident from equations (4.2),(4.3), and

(4.7) that the vector

x, (t)

x, (t)
of extra measurements is such that v(t) and y(t) satisfy
the tracking condition(4.5) for any M crix(a=t) ¢ e(t)
satisfies the steady-state condition. (4.6) since equation (4.1)
clearly implies that

X, (£)
lmfa;; + A,]| L =0 . (4.9)
oo x, (t)
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in any steady state. However, the condition that rank Fzszsz
requires that C, € R*** ana A, E rP"XL 4re such that

M ER**(A=L) .an be chosen so that
rank F, = rank(C2+MA12) = 9 . (4.10)

It is evident from equations (4.1),(4.2),(4.3), and (4.4)
that such continuous-time tracking systems are governed on

T by state and output equations of the respective forms

é(t) i 0 ’ “Fl ’ ‘Fz Z(t)
xl(t) = (o] R All ’ A12 xl(t)
x, (t) (9BoKy s Ayy=9B,K Fy , A, ,-gB,K F, | |x,(t)
B
I
+ (o} v(t) (4. 11)
9B, K
and
z(t)
y(e) = [0, ¢, Glix (8} . (4. 12)
xz(t)

The transfer function matrix relating the plant output
vector to the command input vector of the closed-loop
continuous-time tracking system governed by equations (4.11)

and (4.12) is clearly

-1
G(M=[0,C.,C11 o , AL _,~Ayy -A;, o)
~gBK1 1=Ay1 198K F) 1 AT =Ry, +gB K F 9B, K,
65 (4.13)
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and the high-gain tracking characteristics of this system
can accordingly be elucidated by invoking the results of
Porter and Shenton (1975) from the .singular perturbation
analysis of transfer function matrices.

These results yleld the asymptotic form of G()) as
the gain parameter g + « and thus greatly facilitate the
determination of controller and transducer matrices Ko’ Kl’
and M such that the continuous-time tracking behaviour of
the closed-loop system becomes increasingly non-interacting
as g is increased. The frequency-response and step-response
characteristics of a continuous-time flight-control system
for the longitudinal dynamics of an aircraft (Kouvaritakis,

Murray, and MacFarlane 1979) are presented in order to

illustrate these general results.

4,2 ANALYSIS

It is evident from equation(4.13) that, by regarding
€ = 1/g as the perturbation parameter, the asymptotic form
of the transfer function matrix G(A) of the continuous-time
tracking system as g + » can be determined by invoking the
results of Porter and Shenton (1975) from the singular
perturbation analysis of transfer function matrices. Indeed,
these results indicate that as g + = the transfer function

matrix G(A) assumes the asymptotic form
T(A) = T(A) + T(A) (4.14)

where
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(A = C_ (AL -A,) B, , (4.15)
T(A) = Cy(AI,~gA,) "1gB,K , (4.16)
A = [ -K°1K1 ' ° ] (4.17)

° AP R Ky 4 Ay mALFR R ' .
° (4.18
T ["12?31] ' Y
c, = [c,F3 % 'R, 4 ¢;-c,Fpir] , (4.19)

and

Ay = -B,K_F, . (4. 20)

It follows from equations (4.14), (4.15), and (4.17) that the
‘slow' modes Zs of the tracking system correspond as g + =

to the poles Z,| )Z, of ;(A) where

2, = (A& C:|AR_+K, |=0} (4. 21)
and

2, = (A& CsfAT ~g"Ay A F rll-O} ’ (4. 22)

and from equations (4.14), (4.16), and (4.20) that the 'fast'
modes Z£ of the tracking system correspond as g + = to the
poles Z3 of I'(A) where

= (AE_C: |AZ,+gF,B K _|=0} . (4. 23)

Furthermore, it follows from equations (4.15), (4.17), (4.18),
and(4.19) that the 'slow' transfer function matrix
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T(A) = (C.=C.Fo Fl)(u -1

-1
17C2F2 T Y Fy) "A ,F,7(4.24)

and from equations(4.16)and(4.20) that the 'fast' transfer

function matrix

~ _ - l l .
r(x) = C2F2 (AIl+gF232K°) ng 2 . (4. 25)

Hence, in view of equations (4.24) and (4.25), it is
evident from equation(4.14) that as g + » the transfer
function matrix G()A) of the continuous-time tracking system

assumes the asymptotic form

-1 -1
All-l-Al2 2 F ) A, ,F

r(A\) = (C,-C,F, Fl)(u -2 122

1 7272

+ C2F2 (A1 +gF2 2Ko) gF252K° (4.26)

in consonance with the fact that both the '*slow' modes
corresponding to the poles Z and the 'fast’ modes correspond-
ing to the poles 23 possibly remain both controllable and
observable as g - =, However, the 'slow’' transfer function
matrix E(A) reduces to the form expressed by equation (4.24)
precisely because the 'slow' modes corresponding to the poles
Z definitely become asymptotically uncontrollable as g + «

in view of the block structure of the matrices A and B in

equations(4 17) and (4.18) .

4,3 SYNTHESIS

It is evident from equations (4.7),(4.9),(4.11), and (4.12)

that tracking will occur in tho\s.nse of equation (4.5)
provided only that
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zsU Z, Cec (4.27)

where C~ is the open left half-plane. In view of equations(4.21),
(4.22), and (4.23), the 'slow' and 'fast’' modes will

satisfy the tracking requirement(4.27) for sufficiently large
gains if the controller and transducer matrices xo, Kl’ and

M are chosen such that 2, Cc™, 2, C¢7, and 2;C ¢ in

the case of plants for which the transducer matrix M can be
simultaneously chosen so as to satisfy the measurement con-
dition expressed by equation (4.10). Moreover, if Ko and M

are chosen so that both ;(A) and ;(A) are diagonal transfer

function matrices by requiring that
F232K° = (c2+MA12)BZK° = diag{cl,oz,...,oz} (4. 28)

where oy € R* (3=1,2,...,2) in the case of r(x), it follows
from equation (4.20)that the transfer function matrix G())
of the continuous-time tracking system will assume the
diagonal asymptotic form I'(A) and therefore that increasingly
non-interacting tracking behaviour will occur as g + «,
Furthermore, such tracking beshaviour will exhibit high
accuracy in the face of plant-parameter variations provided
that the steady-state conditions expressed by equation (4.9)
correspond to 'kinematic' relationships which hold between
the state variables as a consequence of the fundamental
dynamical structure of the plant.

However, increasingly ‘'tight' tracking behaviour will
not in general occur as g + » in view of the possible presence
in the plant output vector of 'slow' modes corresponding to

the poles Z2 of the 'slow' transfer function matrix ;(A).
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But the presence of any such 'slow' modes is the inevitable
consequence of the introduction of appropriate transducers
which generate extra plant output measurements so as to
ensure that rank FZBZ = £ and thus render plants for which

rank CZB < £ amenable to high-gain error-actuated control.

2
Indeed, increasingly 'tight' tracking behaviour is achievable
as g » » only in the case of plants for which rank Cza2 = 2
(Porter and Bradshaw 1972%) and which are accordingly amenable
to high-gain error-actuated control without the necessity

for the generation of extra plant output measurements.

4,4 TLLUSTRATIVE ExAMPLE

These general results can be conveniently illustrated
by designing a high-gain error-actuated analogue flight

controller for the longitudinal dynamics of an aircraft

governed on T by the respective state and output equations

(Rouvaritakis, Murray, and MacFarlane 1979)

x (0] fo, 1132 , o , o , 1 J[x®)]
%, (t) o, 0 ' o) ' 1 , 0 X, (t)
x4(t)| = |0, -0.1712 , -0.0538 , ) » 0.0705| |x4(t)
x4 (t) o, o) + 0.0485 , -0.8536 , ~1.013 ||x,(t)
% (£)] o , 0 » =0.2909 , 1.0532 , -0.6959] [x.(t)]

T 0 +0+ O A
0 ' 0 ¢ o u, (t)
+ |=-0.0012 , 1, 0 uz(t) (4.29)
! 0.4419 , 0 , -1.6646||u,(¢) |
| [ 0.1575 , 0 , -0.0732 b
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and

"xl (t)]
yz(t) = 10,0,1,0,0 x3(t) (4.30)
3(t) o,1,0,0,0 x4(t)
[ Xg (£) ]

from which it can be readily verified that the first Markov

parameter

(o] r 0, 0
CZBZ = '0.0012 ’ 1 ’ o (4. 31)

0 ¢+ O, 0

is rank defective. In case {01,02,03} = {1,1,1}, Kl =K,

and

’ (4. 32)
o] ’ 0-25

it follows from equations (4.3), (4.4), and (4.28) that the
corresponding transducers and high-gain error-actuated
analogue controller are governed on 7 by the respective

measurement and control-law equations

Txl(t)T
w, (t) 1,0.283,0, o0 , 0.25 %y ()
wa(t)| = o, o ,1, o , o x4(t) | (4.33)
w3(t) 0, 1 r 0, 0.25, 0 x4(t)
X5 (€
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and

ul(t) -28,97 r O, =1.274 el(t)
U3 (t) "'7. 690 Fé O ’ -2. 740 e3 (t)
-28.97 r O, =1.274 Zl(t)
+ -0.0348 , 1 , -0.0015 zz(t) (4.34)

and it is evident from equations (4.21), (4.22), and (4.23)
that 7, = {-1,-1,-1}, Z, = {-4,-4}, and Z; = {-g,-g,-gl}.
It is also evident from egquation(4.26) that the asymptotic

transfer function matrix assumes the diagonal form

4
7¢' % O
ra) =)o, X%E , O (4.35)
o, 0 ,

and therefore that the closed-loop continuous-time flight-
control system for the longitudinal dynamics of the aircraft

will exhibit increasingly non-interacting tracking behaviour

as g » = when the control input vector [hl(t) o U,y (E) u3(t)]T

is generated by the high-gain analogue controller governed

on T by equation (4.34). However, it is apparent from equation
(4.35that increasingly 'tight' tracking behaviour will be
achieved only in the case of ¥Y5(t) in view of the presence

in y,(t) and Y3(t) of "he 'slow' modes corresponding to the
poles 22.
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The actual frequency-response loci G(iw) for w € (~=,+»)
are shown in Figs4.1,4.2,and 4.3 when g = 10,20, and 50,
respectively, and it is clear that the actual frequency-
response loci approach the asymptotic frequency-response
loci I'(iw) as the gain parameter g is increased. The
corresponding step-response characteristics are shown in
Fig 4.4,Fig4.5,and Fig 4.6 whenlv, (t) , v, (t) , v5(t)]T =
[2.,0,0% [vyt) , vy , vy()]T = [0, 1, 0]%, ana
[vl(t) » Volt) , v3(t)]T =[o, 0, I]T, respectively, and
it is evident that increasingly non-interacting tracking
occurs as the gain parameter g is increased but that in-

creasingly 'tight' tracking occurs only in the case of yz(t).

4,5 CoNcLUSTON

Singular perturbation methods have been used to exhibit
the asymptotic structure of the transfer function matrices
of continuous-time tracking systems incorporating linear
multivariable plants which are amenable to high~gain error-
actuated analogue control only if extra plant output measure-
ments are generated by the introduction of appropriate trans-
ducers and processed by inner-loop compensators. It has Leen
shown that these results greatly facilitate the determination
of controller and transducer matrices which ensure that the
closed-loop behaviour of such continuous-time tracking systems
becomes increasingly non-interacting as the gain parameter g

is increased. These general results have been illustrated by

the presentation of the frequency-response and step-response
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CHAPTER 5

DESIGN OF TRACKING SYSTEMS
INCORPORATING INNER-LOGP COMPENSATORS
AND FAST-SAMPLING ERROR-ACTUATED CONTROLLERS
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5.1 INTRODUCTION

In this chapter singular perturbation methods are used
to exhibit the asymptotic structure of the transfer function
matrices of discrete-time tracking systems incorporating
linear multivariable plants which are amenable to fast-
sampling error-actuated digital control (Bradshaw and Porter
1980) only if extra plant output measurements are generated
by the introduction of appropriate transducers and processed
by inner-loop compensators. Such tracking systems consist
of a linear multivariable plant dJoverned on the continuous-
time set T = [0;+w) by state, output, and measurement

equations of the respective forms

X, (t) A.. , A x, (t) o}
[,1 } = [ll 12” 1 } + [ }u(t) , (5.1)
xz(t) A21 ' Aéz‘ xz(t) 52

S [xpe]
yt) = [c; , ¢c,] o ' (5.2)
X, (t)
and
x, (t)
wie) = [F) o 1| ° } r (5.3)
' X, (t)

together with a fast-sampling error-actuated digital con-
troller governed on the discrete-time set TT = {0,T,2T,...}

by a control-law equation of the form

u(kT) = f{Koe(kT)+Klz(kT)} (5.4)
which is required to generate the control input vector

112




u(t) = u(kry, t €[kT , (k+1)T), kT € T,, so as to cause the
output vector y(t) to track any constant command input
vector v(t) on TT in the sense that

lim{v(kT)-y(kT)} = O (5.5)

k+o
as a consequence of the fact that the error vector e(t) =
v(t) - w(t) assumes the steady-state value

lim e(kT) = lim{v(kT)-w(kT)} = 0O (5.6)

k<o ko

for arbitrary initial conditions. In equations (5.1), (5.2),
(5.3)and(5.4) ,x, (8) € B4, % (0) €Y, wie) € 7%, vy € 7Y,
wit) & RR‘, AllER(n-l)X(n-l) , A12€ R(n-l)xll AZlERQx(n-l) ,
A22 €R£x2' Bzeklxl' clenlx(n-l)' CZERJLxL, Fleklx(n-l)’
F, R, rank C,B, < %, rank F B, = L, e(t) c Y, vv) ERY,
(kD) = 2(0) + T I a(4m) € RE, R, ER**, k€ R¥*Y, £ CRY,

3j=0
and

F, . 7] = [c;+mn; , Cyvia ] (5.7)

Lx(n- L)

where M €R It is evident from equations (5.2), (5.3),

and (5.7) that the vector

xl(t)
wit) - y(t) = [MA;, , MA,,] (5.8)
x5 (t)
of extra measurements is such that v(kT) and y(kT) satisfy
the tracking condition(5.5) for any M €R£x(n—£) if e(kT)
satisfies the steady-state condition (5.6) since equation (5.1)

clearly implies that
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[ ] xl(t) o
lim A A =
o 11 7 712 xz(t)

in any steady state.

F2B2 = { requires that C, ERRXZ

such that M GZRIX(n-Z)

rank Fz = rank(C2+MA12) = 2

It is evident from equations

(5.9)

However, the condition that rank
and A12 E:R(n-z)xz are

can be chosen so that

. (5-10)

(5.1) ,(5.2) ,(5.3), and (5.4)

that such discrete-time tracking systems are governed on TT

by state and output equations of the respective forms

z{ (k+1)T}]
x, { (k+1) T}
xz{(k+l)T}J

Il ’ -TFl r
= [EY K0, -ET K Fyh 0,
| LE¥ K 1991~ E¥ K F1r 8y
TI,
+ |£¥,K_|v(kT)
£Y K
and
z (kT)
y(kt) = [0, Cy » Cpllx; (kD)
xz(kT)
where
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—f‘leon xl(kT)
-fwzonz X, (kT)

{5.11)

(5.12)




® ® A.. , A
[11 ' 1j - exp [11 12},r (5. 13)
%2, 7 % A1 v By,

and
¥ A A 0
[1] = fTexp [11 ’ lz]t [ ]dt . (5.14)
¥y By1 ¢ Byal | LBy

The transfer function matrix relating the plant output
vector to the command input vector of the closed-loop
discrete-time tracking system governed by equations (5.11)

and (5.12) is clearly

G(A) =
AL, -1 TF TF “lrgr
' A 1 ! 2 L
fo,cy0C,] “£¥ Ry AL _ =00 +EY K Fy, =0, ,+£¥ K F, £¥,K
“EY Ky, =0, +E¥,K Fy AT =05, +f¥,K F, £¥,K
(5.15)

and the fast-sampling tracking characteristics of this system
can accordingly be elucidated by invoking the results of
Porter and Shenton (1975) from the singular perturbation
analysis of transfer function matrices.

These results yield the asymptotic form of G(A) as the
sampling frequency f + = and thus greatly facilitate the
determination of controller and transducer matrices Kor Kyy
and M such that the discrete-time tracking behaviour of the
closed~loop system becomes increasingly non-interacting as

f is increased. The frequency-response and step-response
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characteristics of a discrete-time flight-control system
for the longitudinal dynamics of an aircraft (Kouvaritakis,
Murray, and MacFarlane 1979) are presented in order to

illustrate these general results.

5.2 ANALYSIS

It is evident from egquation (5.15) that, by regarding
€ = 1/f as the perturbation parameter, the asymptotic form
of the transfer function matrix G(A) of the discrete-time
tracking system as f - » can be determined by invoking the

results of Porter and Shenton (1975) from the ingular

perturbation analysis of transfer function matrices. 1Indeed,

since it follows from equations (5.13) and (5.14) that

A A
[ 11’ 12} (5.16)

0] -1 - ’ $
1im f[ 11 "n-2 12 }
3 Ay v B2

fro L 9y v 0pp7I

Wl 0
lim £ = ’ (5.17)
fro ?2 82

these results indicate that as £ + «» the transfer function

and

matrix G()) assumes the asymptotic form

T + TN (5.18)

T(A)
where

Co (AL -I_-Ta} lTBo , (5.19)

r(A)

116




1

f‘(x) = Cz(”z'lz“‘4)- B,K ' (5.20)
[ -K_ ' o
A = ok -1 ] , (5.21)
[A1oF KKy v Ay =Ry oF, F,
S 2
BO = A F_l ’ (5.2 )
[Aq,F)
-1 - -1
c, = [cFp 'k 'K, 4 cp=c,F; Fy] , (5.23)
and
A, = -B,K_F, . (5.24)

It follows from equations (5.18), (5.19), and (5.21) that the
'slow' modes Zs of the tracking system correspond as f +

to the poles ZlLJ 1, of T'(A) where
2, = (A Ec:|Ary-1 4%k, | =0} (5.25)
and

-1 _
z, = {1 SIS : I _y~TA,,+TA F,"F,[=0} , (5.26)

n-%" 2
and from equations (5.8), (5.20), and (5.24) that the 'fast'
modes Zf of the tracking system correspond as £ + = to

the poles Z3 of T (A) where
Z3 = (A€ C:|AI, ~I,+F,B,K |=0} . (5.27)

Furthermore, it follows from equations (5.19),(5.21),(5.22),

and (5.23)that the 'slow' transfer function matrix

o . -1, - -1
T() = (C1=C,F3 F1) (NI =T, =Ty +TA ), Fy F ) Tlea 7]
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and from equations (5.20)and(5.24)that the 'fast' transfer

function matrix

lr B.x ) (5.29)

~ -l -
F(x) =C F2 (AIQ-IQ+FZBZK0) 2B, Ky

2

Hence, in view of equations (5.28) and (5.29), it is
evident from equation(5.18)that as f + » the transfer
function matrix G()) of the discrete~time tracking system

assumes the asymptotic form

-1 -1

= -c g1 - - -1
r(a) -(Cl Cc F2 Fl)(AIn_ I TA, ,+TA. F AlZFZ

g In-g TR *TA O F7F)) T

2

1

-1 -
+ C2F2 (XIQ—IQ+F232KO) F282K° (5. 30)

in conscnance with the fact that both the 'slow' modes
corresponding to the poles 22 and the 'fast' modes correspond-
ing to the poles Z3 possibly remain both controllable and
observable as £ +~ », However, the 'slow' transfer function
matrix E(X) reduces to the form expressed by equation (5.28)
precisely because the 'slow' modes corre3ponding to the

poles Zl definitely become asymptotically uncontrollable as

f » » in view of the block structure of the matrices Ao and

B, in equations (5.21) and (5.22).

5.3 SYNTHESIS

It is evident from equations (5.7),(5.9),(5.11), and (5.12)

that tracking will occur in the sense of equation (5.5)

provided only that

2, U 2, Cro” (5.31)
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where 0~ is the open unit disc. In view of equations (5.25),
(5.26)and (5.27) ,the 'slow' and 'fast' modes will satisfy

the tracking requirement (5.31) for sufficiently small sampling
periods if the contrcller and transducer matrices Ko' Kl’

and M are chosen such that both ZICD- and 7, C v~ for suf-
ficiently small sampling periods and 23(::0- in the case of
plants for which the transducer matrix M can be simultaneously
chosen so as to satisfy the measurement condition expressed

by equation(5.10). Moreover, if K, and M are chosen so that
both ;(k) and E(A) are diagonal transfer function matrices

by requiring that
F,B, K = (C,+MA,,)B,K = diag{ol,az,...,cz} (5.32)

where l-ojEZ,R(Q\D- (j=1,2,...,2) in the case of ;(X), it
follows from equation (5.24)that the transfer function matrix
G()\) of the discrete-time tracking system will assume the
diagonal asymptotic form I'(A) and therefore that increasingly
non-interacting tracking behaviour will occur as f » =,
Furthermore, such tracking behaviour will exhibit high accuracy
in the face of plant-parameter variations provided that the
steady-state conditions expressed by equation (5.9)correspond
to 'kinematic' relationsihiips which hold between the state
variables as a consequence of the fundamental dynamical
structure of the plant.

However, increasingly 'tight' tracking behaviour will
not in general occur as £ + «» in view of the possible presence
in the plant output vector of 'slow' modes corresponding to
the poles Z2 of the 'slow' transfer function matrix ;(A).

But the presence of any such 'slow' modes is the inevitable
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consequence of the introduction of appropriate transducers
which generate extra plant output measurements so as to

ensure that rank F232 = { and thus render plants for which
rank CZBZ < § amenable to fast-sampling error-actuated control.
Indeed, increasingly 'tight' tracking behaviour is achievable
as f - » only in the case of plants for which rank C,B, = 2
(Bradshaw and Porter 198Q) and which are accordingly amenable

to fast-sampling error-actuated control without the necessity

for the generation of extra plant output measurements.

5.4 ILLUSTRATIVE EXAMPLE

These general results can be conveniently illustrated
by designing a fast-sampling error-actuated digital flight
controller for the longitudinal dynamics of an aircraft
governed on T by the respective state and output equations

(Kouvaritakis, Murray, and MacFarlane 1979)

(%, (£)] [o , 1.132 , 0 , o , 1 ] % (0]
X, () o, O ’ 0 , 1 ’ o X5 (t)
5:3(1:) = |0, -0.1712 , -0.0538 , 0 » 0.0705| |x,4(t)
x4 (t) o, o} » 0.0485 , -0.8536 , =-1.013 ||x,(t)
%g(t)] [0, © » =0.2909 , 1.0532 , -0.6859] [x(t)]
[ o , 0, o ]
0 , 0, 0 u, (t)
+ |-0.0012 , 1, 0 u, () (5.33)
0.4419 , O , -1.6646| [u,(t)
| 0.1575 , 0 , =0.0732]
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and
[, (8)]
Yl(t) l,0,0,0,0 xz(t)
Yz(t) =0,0,1,0,0 x3(t) (5.34)
3(t) o,1,0,0,0 x4(t)
(x5 ()

from which it can be readily verified that the first Markov

parameter

0 e 0, 0
C282 = |-0.0012 , 1, 0 (5.35)

o , 0,0

is rank defective. In case {01,02,03} = {1,1,1}, K, = K_,

and

0.25, O
M= o , O ' (5.36)
o , 0.25

it follows from equations (5.3), (5.4), and (5.32) that the
corresponding transducers and fast-sampling error-actuated
digital controller are governed on T and TT by the respective

measurement and control-law equations

Fxl(t:)'1
w, (t) 1,0.283,0, 0 , 0.25]|x,(t)
wop(¢&){ = o, o ,1, o , o x4(t) | (5.37)
wa(t) ©, 1 ,0,0.25, O J|x.(¢t
(xg(t)
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and
u, (kT) [-28.97 , 0, =1.274 7 "el(kfr)’
uy (kT) | -7.690 , 0, -2.740 | Le3(k‘1‘)_

[-28.97 , 0, =-1.274 ”zl(k'r)‘

+ -0.0348 , 1 , -0.0015 zz(kT) (5.38)

l_ -70690 ’ O ’ -2-740 b _23(kT)J

and it is evident from equations (5.25),(5.26),and(5.27) that

= {l-7,1-T,1-T}, Z, = {1-4T1,1-47,1-4T}, and Z, = {0,0,0}.

4 3
It is also evident from equation (5.30) that the asymptotic

transfer function matrix assumes the diagonal form

4T

b =i+sdr ' 0+ O
r =] o L3, o (5.39)
°© .0 Taw

and therefore that the closed-loop discrete-time flight-control
system for the longitudinal dynamics of the aircraft will
exhibit increasingly non-interacting tracking behaviour as

f + » when the piecewise-constant control input vector

[a,(8) » uy(e) , ug(0)]T = [u, (kD) , uy (k) , uykm]T,

t € [kT , (k+1)T), kT EZTT, is generated by the fast-sampling
digital controller governed on TT by equation (5.38). However,
it is apparent from equation (5,35)that increasingly 'tight'
tracking behaviour will be achieved only in the case of yz(t)
in view of the presence in yl(t) and y3(t) of the 'slow'

modes corresponding to the poles Zz.
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The actual frequency-response loci c(el®T) for ur & o, 2n)
are shown in Figs 5.1, 5.2,and 5.3 when T = 0.10, 0.05, and 0.02,
respectively, and it is clear that the actual frequency-response
uT)

as the sampling frequency f is increased. The corresponding

loci approach the asymptotic frequency-response loci I‘(ei

step-response characteristics ara shown in Fig 5.4, Fig5.5, and
Fig5.6when[v, (t) , v,(t) , vyl =1, 0, o]7, [vy ()
v, (t) v3(t)]T =o,1, 0]T, and Evl(t) , Vo(t) v3(t)]T =
B), o, l]T, respectively, and it is evident that increasingly
non-interacting tracking occurs as the sampling frequency £

is increased but that increasingly 'tight' tracking occurs

only in the case of yz(t).

5.5 CoNcLusION

Singular perturbation methods have been used to exhibit
the asymptotic structure of the transfer function matrices
of discrete~time tracking systems incorporating linear
multivariable plants which are amenable to fast-sampling
error-actuated digital control only if extra plant output
measurements, are generated by the introduction of appropriate
transducers and processed by inner-loop compensators. It
has been shown that these results greatly facilitate the
determination of controller and transducer matrices which
ensure that the closed-loop behaviour of such discrete-time .
tracking systems becomes increasingly non-interacting as the
sampling frequency f is increased. These general results

have been illustrated by the presentation of the frequency-
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response and step-response characteristics of a discrete-
time flight-control system for the longitudinal dynamics of

an aircraft.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS
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6.1 CONCLUSIONS

The conceptual and computaticnal simplicity of singular
perturbation methods (Porter and Shenton 1975) in the design
of both analogue and digital tracking systems incorporating
error—-actuated controllers has been demonstrated. This
demonstration has been effected by designing such controllers
for plants which have previously been considered by other
methods (MacFarlane and Kouvaritakis 1977, Kouvaritakis,
Murray, and MacFarlane 1979) so that detailed comparisons
between alternative design techniques can readily be made,
at least in the case of error-actuated analogue controllers.

Moreover, further demonstration of the power of the
design techniques described in this report has been provided
by the design of direct digital flight-mode controllers for
the F-16 aircraft (Porter and Bradshaw 198l1). In addition,
the fact that high-gain and fast-sampling error-actuated
controllers remain highly effective in the presence of gross
actuator nonlinearities has been conclusively demonstrated
(Porter 198la, Porter 198lb, Porter 198lc, Porter 1981d).
Thus, the same basic design techniques have been shown to be

applicable to both linear and nonlinear multivariable plants.

6.2 RECOMMENDATIONS

The controllers for the F-16 aircraft designed by
singular perturbation methods (Porter and Bradshaw 1981) are
extremely robust in the sense that the same controller

remains effective throughout a wide range of different flight
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conditions. However, in case even higher performance
characteristics are required, the use of adaptive controllers
becomes unavoidable and the study of fast-sampling adaptive
digital controllers is therefore recommended.

Finally, although fast-sampling digital controllers for
the F~16 aircraft have been successfully implemented in the
Engineering Dynamics and Control Laboratory at the University
of Salford using microprocessor hardware (Garis 1981), the
implementation of such controllers in actual aircraft and sub-
sequent flight testing is recommended. Such practical im-
plementation would obviously entail close liaison with the
aerospace industry, based initially upon the wider dissemination

of the design methodologies described in this report.
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